≫ Archive Data

Resources

As of Nov. 15, 2018 there are 586 BDML-files and 1086 image sets.

OrganismTypeBasedonPaperNumber of BDML-filesNumber of images in SSBDReleased dateUpdate date
C. elegansNucleusMeasurementBao et al. 2006102013/10/032018/11/15
C. elegansNucleusMeasurementKyoda et al. 20131862,221,5602013/09/022018/11/15
C. elegansNucleusSimulationKimura & Onami 200510002013/10/032018/11/15
C. elegansBehaviorMeasurementCronin et al. 20051102014/10/032018/11/15
C. elegansNucleusMeasurementToyoshima et al. 20161441,3802016/05/202018/11/15
C. elegansCellMeasurementTakayama & Onami 201611977,3062016/10/032018/11/15
C. elegansCellMeasurementAzuma & Onami 201611442017/03/012018/11/15
C. elegansMoleculeMeasurementArata et a. 201633,0002017/10/032018/11/15
D. cf. damesiIndividualMeasurementInoue & Kondo 201606,0962017/10/032018/11/15
D. discoideumMoleculeMeasurementKomatsuzaki et al. 201515,4002015/10/032018/11/15
D. discoideumMoleculeMeasurementYasui et al. 201402,4212017/10/032018/11/15
D. discoideumCellMeasurementShibata et al. 201221,4402017/10/032018/11/15
D. discoideum AX2CellMeasurementKamimura et al. 201603242018/11/14-
D. discoideum, Cultured cell (rat; PC-12), NAMoleculeMeasurement/SimulationWatabe et al. 20154612016/01/182018/11/15
D. melanogasterNucleusMeasurementKeller et al. 2010202013/10/032018/11/15
D. melanogasterCellMeasurementKondo & Hayashi 2013085,9282017/10/032018/11/15
D. melanogasterCellMeasurementYasugi et al. 20170122018/11/14-
D. rerioNucleusMeasurementKeller et al. 2008702013/10/032018/11/15
E. coliMoleculeSimulationArjunan & Tomita 2010102013/09/022018/11/15
H. sapiensCellMeasurementTakagi et al. 20170322018/11/14-
H. sapiens (ES)TissueMeasurementShirai et al. 2016022017/10/032018/11/15
H. sapiens (iPS)CellMeasurementKanemura et al. 20130482017/10/032018/11/15
H. sapiens, M. musculusCellMeasurementNojima et al. 201703422018/11/14-
M. musculusNucleusMeasurementBashar et al. 201212,8002014/10/032018/11/15
M. musculusGene expressionMeasurementMasumoto et al. 2010(OmicsBDML) 802014/10/032017/10/03
M. musculusCell/MoleculeMeasurementOchiai et al. 201501222016/10/032018/11/15
M. musculusGene expressionMeasurementHarima et al. 201321462016/01/182018/11/15
M. musculusCell/OrganMeasurementKe et al. 2013021,9952017/10/032018/11/15
M. musculusMolecule/CellMeasurementSakakibara et al. 2015143,0442017/10/032018/11/15
M. musculusMoleculeMeasurementHirata et al. 20161102017/10/032018/11/15
M. musculusCellMeasurementNoguchi et al. 2015028,2452018/11/14-
M. musculusOrganMeasurementSusaki et al. 20140128122017/10/032018/11/15
M. musculusOrganMeasurementSusaki et al. 201505122017/10/032018/11/15
M. musculusOrganMeasurementTainaka et al. 201405432017/10/032018/11/15
M. musculusCellMeasurementHerawati et al. 2016050022018/11/14-
M. musculusCellMeasurementMinegishi et al. 20170122018/11/14-
M. musculusCellMeasurementIkeda et al. 20180272018/11/14-
M. musculusCellMeasurementFumoto et al. 201702012018/11/14-
M. musculusCellMeasurementKosodo et al. 2017027382018/11/14-
M. musculusCellMeasurementKoeberle et al. 201706772018/11/14-
M. musculusCellMeasurementIsshiki et al. 2014052102018/11/14-
M. musculus (implanted with KPL-4: H. sapiens)CellMeasurementJin et al. 20160242018/11/14-
M. musculus (implanted with KPL-4: H. sapiens)CellMeasurementTsuboi et al. 20170392018/11/14-
M. musculus (iPS)OrganMeasurementKinoshita et al. 201603842017/10/032018/11/15
M. musculus (iPS)CellMeasurementIwasaki et al. 20160392017/10/032018/11/15
M. musculus (iPS)TissueMeasurementAssawachananont et al. 2014082017/10/032018/11/15
M. musculus (iPS), D. melanogaster, Cultured cell (HEK293T: human)OrganMeasurementKe et al. 2016014,6562017/10/032018/11/15
M. musculus (iPS)Cell/ParticleMeasurementTanaka & Fujita 2015214,573 (.tif)2016/10/032018/11/15
M. sieboldiCellMeasurementTanaka et al. 2017202018/11/15-
X. laevisMolecule/CellMeasurementInomata et al. 201309,0002017/10/032018/11/15
X. laevisCellMeasurementSuzuki et al. 2016012017/10/032018/11/15
X. laevis, Cultured cell (Hela: H. sapiens)CellMeasurementIshiwata et al. 20170782018/11/14-
Cultured cell (CHO: hamster + MDCK: dog)Molecule/CellMeasurementMatsuda et al. 201208672017/10/032018/11/15
Cultured cell (CHO: hamster)Molecule/CellMeasurementMatsuda et al. 201507642017/10/032018/11/15
Cultured cell (DO11.10: mouse)CellMeasurementIchimura et al. 20160482017/10/032018/11/15
Cultured cell (Eph4: M. musculus)CellMeasurementYano et al. 2013032018/11/14-
Cultured cell (ES: M. musculus)CellMeasurementMaekawa et al. 20150452018/11/14-
Cultured cell (Hela: H. sapiens)CellMeasurementInomata et al. 20170242018/11/14-
Cultured cell (Hela: H. sapiens), M. musculusCellMeasurementUda et al. 2017053532018/11/14-
Cultured cell (HeLa: H. sapiens)CellMeasurementMakino et al. 20160102018/11/14-
Cultured cell (Hela: H. sapiens), M. musculusCellMeasurementKonagaya et al. 2017022442018/11/14-
Cultured cell (HT-1080: human)CellMeasurementKunida et al. 201202112016/10/032018/11/15
Cultured cell (HT-1080: human)CellMeasurementYamao et al. 201507,8652017/10/032018/11/15
Cultured cell (HT29: H. sapiens)CellMeasurementIto et al. 2017020372018/11/14-
Cultured cell (MDCK II: dog, EpH4: mouse, R2/7 alpha-Cate: human)CellMeasurementYonemura 201401472017/10/032018/11/15
Cultured cell (MDCK II: dog)Molecule/CellMeasurementTakai et al. 201523602017/10/032018/11/15
Cultured cell (MDCK: dog)MoleculeMeasurementHayashi & Okada 201503652017/10/032018/11/15
Cultured cell (MDCK: M. musculus)CellMeasurementAoki et al. 2017121332018/11/14-
Cultured cell (NIH3T3: M. musculus)CellMeasurementBansod et al. 201701982018/11/14-
Cultured cell (NRK-52E: rat)Molecule/CellMeasurementAoki et al. 201308562016/10/032018/11/15
NAParticleMeasurementTanaka 201402002016/10/032018/11/15
NAMicrotubulesMeasurementTorisawa et al. 201601,0592017/10/032018/11/15
NAMoleculeSimulationHihara et al. 2012302017/10/032018/11/15
NA (Prukinje cell)CellSimulationFujii et al. 201710002018/11/15-

Related papers of resources

  • Bao et al. (2006) Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A., 103(8), 2707-2712 [PubMed].
  • Kyoda et al. (2013) WDDD: Worm Developmental Dynamics Database. Nucleic Acids Res., 41, D732-D737 [PubMed].
  • Kimura & Onami (2005) Computer simulations and image processing reveal length-dependent pulling force as the primary mechanism for C. elegans male pronuclear migration. Dev. Cell, 8(5), 765-775 [PubMed].
  • Cronin et al. (2005) An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet., 6, 5 [PubMed].
  • Toyoshima et al. (2016) Accurate automatic detection of densely distributed cell nuclei in 3D space. PLoS Comput. Biol., 12(6), e1004970 [PubMed].
  • Takayama & Onami (2016) The sperm TRP-3 channel mediates the onset of a Ca(2+) wave in the fertilized C. elegans oocyte. Cell Rep., 15(3), 625-637. [PubMed].
  • Azuma & Onami (2017) Biologically constrained optimization based cell membrane segmentation in C. elegans embryos. BMC Bioinfo., 18(1): 307 [PubMed].
  • Arata et al. (2016) Cortical Polarity of the RING Protein PAR-2 Is Maintained by Exchange Rate Kinetics at the Cortical-Cytoplasmic Boundary. Cell Rep., 16, 1-13 [PubMed].
  • Inoue and Kondo (2016) Suture pattern formation in ammonites and the unknown rear mantle structure. Sci. Rep., 6, 33689 [PubMed].
  • Komatsuzaki et al. (2015) Compact halo-ligand-conjugated quantum dots for multicolored single-molecule imaging of overcrowding GPCR proteins on cell membranes. Small, 11(12), 1396-1401 [PubMed].
  • Yasui et al. (2014) PTEN hopping on the cell membrane is regulated via a positively-charged C2 domain. PLoS Comput. Biol., 10(9), e1003817 [PubMed].
  • Shibata et al. (2012) Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis. J. Cell Sci., 125: 5138-5150 [PubMed].
  • Kamimura et al. (2016) Heterotrimeric G-protein shuttling via Gip1 extends the dynamic range of eukaryotic chemotaxis. Proc. Natl. Acad. Sci. U.S.A., 113(16), 4356-4361 [PubMed].
  • Watabe et al. (2015) A computational framework for bioimaging simulation. PLoS One, 10(7), e0130089 [PubMed].
  • Keller et al. (2010) Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods, 7(8), 637-642 [PubMed].
  • Kondo & Hayashi (2013) Mitotic cell rounding accelerates epithelial invagination. Nat., 494, 125-129 [PubMed].
  • Yasugi et al. (2017) Adaptation to dietary conditions by trehalose metabolism in Drosophila. Sci. Rep., 7(1), 1619 [PubMed].
  • Keller et al. (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Sci., 322(5904), 1065-1069 [PubMed].
  • Arjunan & Tomita (2010) A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation. Syst. Synth. Biol., 4(1), 35-53 [PubMed].
  • Takagi et al. (2017) Incidence of outer retinal tubulation in eyes with choroidal neovascularization under intravitreal anti-vascular endothelial growth factor therapy in a Japanese population. Clin. Ophthalmol., 11: 1219-1225. [PubMed].
  • Shirai et al. (2016) Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc. Natl. Acad. Sci. U.S.A., 113(1), E81-90 [[PubMed].
  • Kanemura et al. (2013) Pigment epithelium-derived factor secreted from retinal pigment epithelium facilitates apoptotic cell death of iPSC. Sci. Rep., 3, 2334 [PubMed].
  • Nojima et al. (2017) CUBIC pathology: three-dimensional imaging for pathological diagnosis. Sci. Rep., 7(1), 9269 [PubMed].
  • Bashar et al. (2012) Automatic extraction of nuclei centroids of mouse embryonic cells from fluorescence microscopy images. PLoS One, 7(5), e35550 [PubMed].
  • Masumoto et al. (2010) Acute induction of Eya3 by late-night light stimulation triggers TSHβ expression in photoperiodis. Curr. Biol., 20(24), 2199-2206 [PubMed].
  • Ochiai et al. (2015) Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res., 43(19), e127 [PubMed].
  • Harima et al. (2013) Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep., 3(1), 1-7 [PubMed].
  • Ke et al. (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci., 16, 1154-1161 [PubMed].
  • Sakakibara et al. (2015) Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nat. Commun., 4, 2212 [PubMed].
  • Hirata et al. (2016) Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots. Sci. Rep., 6, 34982 [PubMed].
  • Noguchi et al. (2015) Directed nigration of pulmonary neuroendocrine cells toward airway branches organizes the stereotypic location of neuroepithelial bodies. Cell Rep., 13(12), 2679–2686 [PubMed].
  • Susaki et al. (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell, 157(3), 726–739 [PubMed].
  • Susaki et al. (2015) Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protocols, 10, 1709–1727 [PubMed].
  • Tainaka et al. (2014) Whole-body imaging with single-cell resolution by tissue decolorization. Cell, 159(4): 911–924 [PubMed].
  • Herawati et al. (2016) Multiciliated cell basal bodies align in stereotypical patterns coordinated by the apical cytoskeleton. J. Cell Biol., 214(5): 571-586. [PubMed].
  • Minegishi et al. (2017) A Wnt5 activity asymmetry and intercellular signaling via PCP proteins polarize node cells for left-right symmetry breaking. Dev Cell, 40(5), 439-452 [PubMed].
  • Ikeda et al. (2018) Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs. Nat. Commun., 9(1), 1387 [PubMed].
  • Fumoto et al. (2017) Modulation of apical constriction by Wnt signaling is required for lung epithelial shape transition. Dev., 144(1), 151-162. [PubMed].
  • Kosodo et al. (2017) Systematic time-dependent visualization and quantitation of the neurogenic rate in brain organoids. Biochem. Biophys. Res. Commun., 483(1), 94-100. [PubMed].
  • Koeberle et al. (2017) Developmental stage-dependent regulation of spine formation by calcium-calmodulin-dependent protein kinase IIα and Rap1. Sci. Rep., 7(1), 13409 [PubMed].
  • Isshiki et al. (2014) Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nat. Commun., 5, 4742 [PubMed].
  • Jin et al. (2016) Enhancement of aqueous stability and fluorescence brightness of indocyanine green using small calix[4]arene micelles for near-infrared fluorescence imaging. Med. Chem. Commun., 7(4), 623-631 [Royal society of chemistry].
  • Tsuboi et al. (2017) Immunoglobulin binding (B1) domain mediated antibody conjugation to quantum dots for in vitro and in vivo molecular imaging. Chem. Commun., 53(68): 9450-9453 [PubMed].
  • Kinoshita et al. (2016) Induction of Functional 3D Ciliary Epithelium-Like Structure From Mouse Induced Pluripotent Stem Cells. Retinal Cell Biol., 57(1), 153-161 [PubMed].
  • Iwasaki et al. (2016) Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool. PLoS One, 11(7), e0158282 [PubMed].
  • Assawachananont et al. (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep., 2(5), 662-674 [PubMed].
  • Ke et al. (2016) Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent. Cell Rep., 14: 2718-2732 [PubMed].
  • Tanaka & Fujita (2015) Fluid driving system for a micropump by differentiating iPS cells into cardiomyocytes on a tent-like structure. Sens. Actuators B Chem., 210(1), 267-272 [ScienceDirect].
  • Tanaka et al. (2017) Earthworm muscle driven bio-micropump. Sen. Actuators B Chem., 242, 1186-1192. [ScienceDirect].
  • Inomata et al. (2013) Scaling of dorsal-ventral patterning by embryo size-dependent degradation of Spemann's organizer signals. Cell, 153(6), 1296-1311 [PubMed].
  • Suzuki et al. (2016) In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration. Genes to Cells, 21(4), 358-369 [PubMed].
  • Ishiwata et al. (2017) Dynamic properties of bio-motile systems with a liquid-crystalline structure. Mol. Cry. & Liq. Cry., 647(1), 127-150 [Taylor & Francis Online].
  • Matsuda et al. (2012) Synthetic signal propagation through direct cell-cell interaction. Sci. Signal., 5, ra31. [PubMed].
  • Matsuda et al. (2015) Synthetic lateral inhibition governs cell-type bifurcation with robust ratios. Nat. Commun., 6, 6195 [PubMed].
  • Ichimura et al. (2016) Non-label immune cell state prediction using Raman spectroscopy. Sci. Rep., 6, 37562. [PubMed].
  • Yano et al. (2013) The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J. Cell Biol., 203(4): 605-614 [PubMed].
  • Maekawa et al. (2015) Optimized culture system to induce neurite outgrowth from retinal ganglion cells in three-dimensional retinal aggregates differentiated from mouse and human embryonic stem cells. Curr. Eye Res., 41(4): 558-568 [PubMed].
  • Sano et al. (2016) Selective control of up-regulated and down-regulated genes by temporal patterns and doses of insulin. Sci. Sig., 9(455), ra112 [PubMed].
  • Inomata et al. (2017) Impact of cellular health conditions on the protein folding state in mammalian cells. Chem. Commun., 53(81), 11245-11248 [PubMed].
  • Uda et al. (2017) Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling. Proc. Natl. Acad. Sci. U.S.A., 114(45), 11962-11967. [PubMed].
  • Makino et al. (2016) A novel sphingomyelin/cholesterol domain-specific probe reveals the dynamics of the membrane domains during virus release and in Niemann-Pick type C. FASEB J., 31(4), 1301-1322 [PubMed].
  • Konagaya et al. (2017) A highly sensitive FRET biosensor for AMPK exhibits heterogeneous AMPK responses among cells and organs. Cell Rep., 21(9), 2628-2638 [PubMed].
  • Kunida et al. (2012) FRET imaging and statistical signal processing reveal positive and negative feedback loops regulating the morphology of randomly migrating HT-1080 cells. J. Cell Sci., 125(10), 2381-2392 [PubMed].
  • Yamao et al. (2015) Distinct predictive performance of Rac1 and Cdc42 in cell migration. Sci. Rep., 5, 17527. [PubMed].
  • Ito et al. (2017) Induced cortical tension restores functional junctions in adhesion-defective carcinoma cells. Nat. Commun., 8(1), 1834-1849 [PubMed].
  • Yonemura (2014) Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment. PLoS One, 9(11), e112922. [PubMed].
  • Takai et al. (2015) Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging. Proc. Natl. Acad. Sci. U.S.A., 112(14), 4352-4356 [PubMed].
  • Hayashi & Okada (2015) Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics. Mol. Biol. Cell, 26(9), 1743-1751. [PubMed].
  • Aoki et al. (2017) Propagating wave of ERK activation orients collective cell migration. Dev. Cell, 43(3), 305-317 [PubMed].
  • Bansod et al. (2017) Hes5 regulates the transition timing of neurogenesis and gliogenesis in mammalian neocortical development. Dev., 144(17), 3156-3167. [PubMed].
  • Aoki et al. (2013) Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Mol. Cell, 52(4), 529-540 [PubMed].
  • Tanaka (2014) A peristaltic pump integrated on a 100% glass microchip using computer controlled piezoelectric actuators. Micromachines, 5(2), 289-299 [Micromachines].
  • Torisawa et al. (2016) Spontaneous Formation of a Globally Connected Contractile Network in a Microtubule-Motor System. Biophys. J., 111(2), 373-385 [PubMed].
  • Hihara et al. (2012) Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep., 2(6), 1645-1656 [PubMed].
  • Fujii et al. (2017) Small-volume effect enables robust, sensitive, and efficient information transfer in the spine. Biophys J., 112(4), 813-8286. [PubMed].